Feature-Based Cellular Texturing for Architectural Models

Justin Legakis Julie Dorsey Steven Gortler

Harvard

University

Massachusetts Institute of Technology

Introduction / Motivation

- What is a cellular texture?
- Separate overall shape of model from fine repetitive detail
- Patterns are affected by features of the underlying model
- Generate 3D cells to texture a 3D object

Related Work

- 2D brick and stone patterns
 Yessios 79, Miyata 90
- Biologically-motivated cellular texturing
 Fleischer et al. 95
- Solid Texturing
 Perlin 85, Worley 96
- Floral ornamental patterns
 Wong et al. 98

Related Work

- 2D brick and stone patterns
 Yessios 79, Miyata 90
- Biologically-motivated cellular texturing
 Fleischer et al. 95
- Solid Texturing
 Perlin 85, Worley 96
- Floral ornamental patterns
 Wong et al. 98

Related Work

- 2D brick and stone patterns
 Yessios 79, Miyata 90
- Biologically-motivated cellular texturing Fleischer *et al.* 95
- Solid Texturing
 Perlin 85, Worley 96
- Floral ornamental patterns
 Wong et al. 98

Related Work

- 2D brick and stone patterns
 - Yessios 79, Miyata 90
- Biologically-motivated cellular texturing
 Fleischer et al. 95
- Solid Texturing

Perlin 85, Worley 96

Floral ornamental patterns

Wong et al. 98

Contributions: What This Paper is About

A strategy for generating 3D cellular textures on a 3D model:

- An order of cellular texturing operations
- Pattern coordination with occupancy maps
- The specification of patterns with a tree of pattern generators

Contributions: What This Paper is About

A strategy for generating 3D cellular textures on a 3D model:

- An order of cellular texturing operations
- Pattern coordination with occupancy maps
- The specification of patterns with a tree of pattern generators

Geometry: Features

- Cells are applied to features of the model: corners, edges, and faces
- Model serves as a scaffolding for cells
- Features can be labeled to capture semantic information about the model

Geometry: Features

- Cells are applied to features of the model: corners, edges, and faces
- Model serves as a scaffolding for cells
- Features can be labeled to capture semantic information about the model

Geometry: Features

- Cells are applied to features of the model: corners, edges, and faces
- Model serves as a scaffolding for cells
- Features can be labeled to capture semantic information about the model

Geometry: Features

- Cells are applied to features of the model: corners, edges, and faces
- Model serves as a scaffolding for cells
- Features can be labeled to capture semantic information about the model

Ordering of Cellular Texturing Operations

- Cells on edges are more constrained than cells on faces
- Cells on corners are more constrained than cells on edges

Texturing order: 1) Corners

2) Edges

3) Faces

Ordering of Cellular Texturing Operations

- Cells on edges are more constrained than cells on faces
- Cells on corners are more constrained than cells on edges

Texturing order: 1) Corners

2) Edges

3) Faces

Ordering of Cellular Texturing Operations

- Cells on edges are more constrained than cells on faces
- Cells on corners are more constrained than cells on edges

Texturing order: 1) Corners

2) Edges

3) Faces

Ordering of Cellular Texturing Operations

- Cells on edges are more constrained than cells on faces
- Cells on corners are more constrained than cells on edges

Texturing order: 1) Corners

2) Edges

3) Faces

Occupancy Maps

- Binary map: occupied or unoccupied
- Keeps track of which regions of a feature have not yet been textured
- Initialized with cells from adjacent features
- Also useful for clipping

Occupancy Maps

- Binary map: occupied or unoccupied
- Keeps track of which regions of a feature have not yet been textured
- Initialized with cells from adjacent features
- Also useful for clipping

Pattern Generators

- Units of code that implement patterns
- Task segmented into three functions: cells for corners, edges, and faces
- Can create cells and/or pass features to other pattern generators
- Can make decisions based on labels or geometric analysis

Summary

Algorithmically generate 3D cellular textures that are the result of both a pattern and the full 3D geometry of the underlying model

Strategy:

- Ordering: corners, edges, faces
- Occupancy maps
- Tree of pattern generators

Future Work

- Experiment with more patterns
- Higher-level specification of patterns
- Mortar
- Different feature sets
- Higher-level constraint solving

SIGGRAPH

Future Work

- Experiment with more patterns
- Higher-level specification of patterns
- Mortar
- Different feature sets
- Higher-level constraint solving

SIGGRAPH

Acknowledgements

Special thanks to Barb Cutler, Stephen Duck, John Alex, Frédo Durand, and the rest of the MIT Computer Graphics Group

This work was supported by:

- NSF awards CCR-9624172 and CCR-9988535
- NSF CISE Research Infrastructure award EIA -9802220
- Pixar Animation Studios